Inertial microfluidics for continuous particle separation in spiral microchannels.
نویسندگان
چکیده
In this work we report on a simple inertial microfluidic device that achieves continuous multi-particle separation using the principle of Dean-coupled inertial migration in spiral microchannels. The dominant inertial forces coupled with the Dean rotational force due to the curvilinear microchannel geometry cause particles to occupy a single equilibrium position near the inner microchannel wall. The position at which particles equilibrate is dependent on the ratio of the inertial lift to Dean drag forces. Using this concept, we demonstrate, for the first time, a spiral lab-on-a-chip (LOC) for size-dependent focusing of particles at distinct equilibrium positions across the microchannel cross-section from a multi-particle mixture. The individual particle streams can be collected with an appropriately designed outlet system. To demonstrate this principle, a 5-loop Archimedean spiral microchannel with a fixed width of 500 microm and a height of 130 microm was used to simultaneously and continuously separate 10 microm, 15 microm, and 20 microm polystyrene particles. The device exhibited 90% separation efficiency. The versatility of the device was demonstrated by separating neuroblastoma and glioma cells with 80% efficiency and high relative viability (>90%). The achieved throughput of approximately 1 million cells/min is substantially higher than the sorting rates reported by other microscale sorting methods and is comparable to the rates obtained with commercial macroscale flow cytometry techniques. The simple planar structure and high throughput offered by this passive microfluidic approach make it attractive for LOC devices in biomedical and environmental applications.
منابع مشابه
Dynamics analysis of microparticles in inertial microfluidics for biomedical applications
Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...
متن کاملInertial Focusing of Microparticles in Curvilinear Microchannels
A passive, continuous and size-dependent focusing technique enabled by "inertial microfluidics", which takes advantage of hydrodynamic forces, is implemented in this study to focus microparticles. The objective is to analyse the decoupling effects of inertial forces and Dean drag forces on microparticles of different sizes in curvilinear microchannels with inner radius of 800 μm and curvature a...
متن کاملContinuous particle separation in spiral microchannels using Dean flows and differential migration.
Microparticle separation and concentration based on size has become indispensable in many biomedical and environmental applications. In this paper we describe a passive microfluidic device with spiral microchannel geometry for complete separation of particles. The design takes advantage of the inertial lift and viscous drag forces acting on particles of various sizes to achieve differential mig...
متن کاملHigh-Throughput Particle Manipulation Based on Hydrodynamic Effects in Microchannels
Microfluidic techniques are effective tools for precise manipulation of particles and cells, whose enrichment and separation is crucial for a wide range of applications in biology, medicine, and chemistry. Recently, lateral particle migration induced by the intrinsic hydrodynamic effects in microchannels, such as inertia and elasticity, has shown its promise for high-throughput and label-free p...
متن کاملA generalized formula for inertial lift on a sphere in microchannels.
Inertial microfluidics has been widely used in high-throughput manipulation of particles and cells by hydrodynamic forces, without the aid of externally applied fields. The performance of inertial microfluidic devices largely relies on precise prediction of particle trajectories that are determined by inertial lift acting on particles. The only way to accurately obtain lift forces is by direct ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 9 20 شماره
صفحات -
تاریخ انتشار 2009